

Principal Components of Orthogonal Object-Oriented Metrics (323-08-14)

White Paper Analyzing Results of NASA Object-Oriented Data

Submitted By: Victor Laing
And

Charles Coleman, Manager, SATC

 October 12, 2001

Technical POC: Dr. Linda Rosenberg Administrative POC: Dennis Brennan

Phone #: 301-286-0087 Phone #: 301-286-6582
Fax #: 301-286-1701 Fax #: 301-286-1667
Email: Linda.Rosenberg@gsfc.nasa.gov Email: Dennis.Brennan@gsfc.nasa.gov
Mail Code: 304 Mail Code: 300

mailto:Linda.Rosenberg@gsfc.nasa.gov
mailto:Dennis.Brennan@gsfc.nasa.gov

ABSTRACT

This report presents the results of Task 323-08-14, Principal Components of Orthogonal
Object-Oriented Metrics, performed by the Software Assurance Technology Center
(SATC) at NASA Goddard Space Flight Center. The task developed an approach to
formulating a set of Orthogonal Object-Oriented metrics. The research is intended to find
a way to produce cheaper and higher quality software. The Orthogonal Object-Oriented
set of metrics will be selected from the core set of metrics that the SATC uses for code
analysis.

 ii

EXECUTIVE SUMMARY

The development of a large software system is a time and resource-consuming activity.
Even with the increasing automation of software development activities, resources are
still scarce. There is also a great interest in software metrics due to their potential for use
as a cost saving device.

This paper presents the research results of the Software Assurance Technology Center
(SATC) at NASA Goddard Space Flight Center, to develop an approach to formulating a
set of Orthogonal Object-Oriented metrics. The research is intended to find a way to
produce cheaper and higher quality software. The Orthogonal Object-Oriented set of
metrics will be selected from the core set of metrics that the SATC uses for code analysis.

The set of Orthogonal Object-Oriented metrics obtained in the study was applied to three
real world industrial strength object-oriented systems to predict their overall quality. The
level of quality found in these three systems is classified into three types: low, medium,
and high. The classification obtained for the systems using the Orthogonal Object-
Oriented metrics set were validated with the SATC approach used for their code analysis
for identifying code quality.

 iii

Table of Contents

ABSTRACT.. ii
ABSTRACT.. ii
EXECUTIVE SUMMARY ... iii
1. Introduction ... 1
2. Background.. 2

2.1 Traditional Metrics.. 2
2.2 Object-Oriented Metrics ... 3
2.3 Orthogonal Object-Oriented Metrics .. 4

3. Theoretical Framework... 4
3.1 Overview of the Object-Oriented Paradigm ... 4
3.2 A Reduced CK Metrics Suite.. 5
3.3 Applying the Reduced Metrics Suite .. 7

4. Empirical Investigation... 8
4.1 Descriptions of the Applications... 8
4.2 Definitions for Statistical Analysis ... 9
4.3 Statistical Analysis.. 10

5. Conclusions and Future Work .. 15
6. References.. 16

Table 1: Summary of Applications used to Validate Reduced CK Metrics Set 9
Table 2: Descriptive Statistics for System A ... 12
Table 3: Correlation Analysis for System A.. 13
Table 4: Descriptive Statistics for System B ... 13
Table 5: Correlation Analysis for System B.. 13
Table 6: Descriptive Statistics for System C ... 13
Table 7: Correlation Analysis for System C.. 14
Table 8: Correlation Analysis Summary.. 14
Table 9: Regression Analysis Summary .. 15

Figure 1: Distributions of the Reduced CK Metrics Set for System A............................ 11
Figure 2: Distributions of the Reduced CK Metrics Set for System B............................ 11
Figure 3: Distributions of the Reduced CK Metrics Set for System................................ 12

 iv

1. Introduction

The Software Assurance Technology Center (SATC) at NASA Goddard Space Flight
Center is currently conducting research on an approach to formulating a set of
Orthogonal Object-Oriented metrics. The research is intended to find a way to produce
cheaper and higher quality software. It was determined by the SATC that there is a lack
of research being conducted in the area of Orthogonal Object-Oriented metrics. The
potential benefit of this research can be applied to both NASA and industry.

Object-Oriented Programming (OOP) is a programming paradigm that is based on
abstractions of object types in the application [HUD]. The key difference between
object-oriented programming and structured programming is that the former identifies the
object types in the applications, while the latter models the applications as a set of
functions.

There is a general shift in the industry from the structured (traditional) programming and
development environment to an object-oriented paradigm, and NASA is no exception in
adhering to this shift. If organizations wish to make a successful change, they need the
appropriate metrics for this new paradigm. One such metrics suite was proposed by
Chidamber and Kemerer [CHI].

There is also a great deal of interest in software metrics due to their potential for use in
procedures to control cost of system development and maintenance activities [TEG].
However, metrics programs are sometimes viewed as being costly with little return on
investment. One way of reducing the cost of a metrics program, increasing efficiency,
and decreasing the intrusiveness caused by the metrics program is to measure “less”.
This is feasible only if we can obtain at least the same level of accuracy with the reduced
information obtained by measuring “less”. A good candidate for accomplishing this task
is Orthogonal Object-Oriented metrics, if one is working in an object-oriented
environment.

The set of Orthogonal Object-Oriented metrics proposed in this paper is designed to
evaluate key features of object-oriented design such as encapsulation, inheritance, and
polymorphism. This evaluation is used to classify the quality level of object-oriented
software systems.

The remainder of the paper is organized as follows: Section 2 first provides an overview
of both traditional and object-oriented metrics. This section also defines and discusses
the concept of Orthogonal Object-Oriented metrics. The theoretical framework for the
Orthogonal Object-Oriented metrics set is developed in Section 3. An empirical
investigation is conducted on three industrial strength object-oriented metrics to validate
the metrics set in Section 4. Our conclusions from this empirical study and the research
results are given in Section 5. Future research directions are also presented in this
section.

 1

2. Background

Traditional and object-oriented programming are fundamentally different and therefore
different metrics are needed for their evaluation. According to Moreau [MOR87],
[MOR89], [MOR90], traditional metrics are inappropriate for object-oriented systems.
However, research conducted by Tegarden [TEG] has shown that a combination of both
traditional and object-oriented metrics may give the best results when analyzing object-
oriented systems with respect to their overall quality.

In Subsection 2.1 we define three traditional metrics, that are popular with practitioners
and researchers. The Chidamber and Kemerer (CK) metrics suite for object-oriented
design are given in Subsection 2.2. Subsection 2.3 defines and explains the concept of
Orthogonal Object-Oriented metrics. The SATC uses most of the metrics listed below or
a modification of them (see [ROS95], [ROS97], [ROS98]).

2.1 Traditional Metrics

Traditional metrics have been applied to the measurement of software complexity of
structured systems since 1976 [MCC76]. This subsection presents the McCabe
Cyclomatic Complexity metric along with two other popular traditional software design
metrics, Source Lines of Code and Comment Percentage.

McCabe Cyclomatic Complexity (CC): Cyclomatic complexity is a measure of a module
control flow complexity based on graph theory [MCC99]. Cyclomatic complexity of a
module uses control structures to create a control flow matrix, which in turn is used to
generate a connected graph. The graph represents the control paths through the module.
The complexity of the graph is the complexity of the module [MCC76], [MCC99].
Fundamentally, the CC of a module is roughly equivalent to the number of decision
points and is a measure of the minimum number of test cases that would be required to
cover all execution paths. A high cyclomatic complexity indicates that the code may be
of low quality and difficult to test and maintain.

Source Lines of Code (SLOC): The SLOC metric measures the number of physical lines
of active code, that is, no blank or commented lines code [LOR94]. Counting the SLOC
is one of the earliest and easiest approaches to measuring complexity. It is also the most
criticized approach [TEG]. In general the higher the SLOC in a module the less
understandable and maintainable the module is.

Comment Percentage (CP): The CP metric is defined as the number of commented lines
of code divided by the number of non-blank lines of code. Usually 20% indicates
adequate commenting for C or Fortran code [ROS95]. A high CP value facilitates in
maintaining a system.

 2

2.2 Object-Oriented Metrics

In 1994 Chidamber and Kemerer [CHI] proposed a now widely accepted suite of metrics
for an object-oriented system. Basili validated the metrics suite in 1996 [BAS] and Tang
in 1999 [TAN]. The six object-oriented metrics are listed below.

Weighted Methods Per Class (WMC): WMC measures the complexity of an individual
class. Two different approaches are used to calculate the WMC metric. The first uses the
sum of the complexity of each method contained in the class. The second approach
assigns a complexity of 1 for each method in the class and then sums the result. This is
equivalent to using the number of methods per class as a measure for WMC [CHI]. The
number of methods and complexity of methods involved is a direct predictor of how
much time and effort is required to develop and maintain the class.

Depth of Inheritance Tree of a Class (DIT): DIT is defined as the length of the longest
path of inheritance ending at the current module [CHI]. In cases involving multiple
inheritances, the DIT will be the maximum length from the node to the root of the tree
[CHI]. The deeper the inheritance tree for a class, the harder it might be to predict its
behavior due to the interaction between the inherited features and new features.
However, the deeper a particular class is in the hierarchy, the greater the potential for
reuse of inherited methods.

Number of Children (NOC): NOC represents the number of immediate subclasses
subordinated to a class in the class hierarchy [CHI]. A moderate value for NOC indicates
scope for reuse and high values may indicate an inappropriate abstraction in the design.
Classes with a large number of children have to provide more generic service to all the
children in various contexts and must be more flexible, a constraint that can introduce
more complexity into the parent class.

Coupling Between Objects (CBO): CBO is defined as the count of the number of other
classes to which it is coupled [CHI]. A class is coupled to another class if it uses the
member method and/or instance variables of the other class. Excessive coupling
indicates weakness of class encapsulation and may inhibit reuse. High coupling also
indicates that more faults may be introduced due to inter-class activities.

Response for a Class (RFC): RFC gives the number of methods that can potentially be
executed in response to a message received by an object of that class [CHI]. If a large
number of methods can be invoked in response to a message, the testing and debugging
of the class becomes more complicated since it requires a greater level of understanding
required on the part of the tester.

Lack of Cohesion in Methods (LOCM): LOCM counts the number of method pairs
whose similarity is 0 minus the count of method pairs whose similarity is not zero. The
larger the number of similar methods in a class the more cohesive the class is [CHI].

 3

Cohesiveness of methods within a class is desirable, since it promotes encapsulation and
lack of cohesion implies classes should probably be split into two or more subclasses.
2.3 Orthogonal Object-Oriented Metrics

This subsection describes what it means for two or more object-oriented metrics to be
orthogonal. The main focus of this study is to produce a minimal set of Orthogonal
Object-Oriented metrics capable of analyzing code quality with the same degree of
accuracy as afforded by a metrics set of a significantly larger cardinality.

Orthogonal: Orthogonality is a measure of intrinsically different characteristics of the
code, therefore any correlation among the measured values is due to relationships among
the target modules and not due to any relationships among the actual metrics themselves.
For example, lines of code and number of comments are said to be non-orthogonal since
adding comments simultaneously increases lines of code. However, source lines of code
and number of comments are said to be orthogonal since source lines of code can be
increased without any changes in the comment count.

Orthogonal Object-Oriented (OOO): Two object-oriented metrics are said to be
Orthogonal Object-Oriented metrics if they are orthogonal.

3. Theoretical Framework

This section provides the foundation and justification of a theoretical framework for
developing an Orthogonal Object-Oriented metrics suite. Subsection 3.1 gives an
overview of the more important aspects of the object-oriented paradigm. The CK suite of
object-oriented metrics is reduced to a single equation and one standalone metric in
Subsection 3.2. A discussion is presented in Subsection 3.3 on how to apply this reduced
CK metrics suite.

3.1 Overview of the Object-Oriented Paradigm

Object-oriented modeling and design is a way of thinking about problems using models
organized around real-world concepts. The fundamental construct is the object, which
combines both data structure and behavior in a single entity [RUM]. There are three
fundamental characteristics required for an object-oriented approach: encapsulation,
polymorphism, and inheritance. Encapsulation is not unique to the object-oriented
paradigm; however polymorphism and inheritance are two aspects unique to the object-
oriented approach [TEG]. These three aspects of the object-oriented paradigm are
described below.

Encapsulation: Encapsulation consists of separating the external aspects of an object,
which are accessible to other objects from the internal implementation details of the
object that are hidden from other objects. Encapsulation prevents a program from
becoming so interdependent that a small change has massive effects. For example, the

 4

implementation of an object can be changed without affecting the application that use it.
One may want to change the implementation of an object to improve performance, fix a
bug, consolidate code, or for porting.

Polymorphism: Polymorphism means having the ability to take several forms. For
object-oriented systems, polymorphism allows the implementation of a given operation to
be dependent on the object that contains the operation. For example, there can be
different operations to pay employees based on the employee’s object type, e.g., part-
time, hourly, or salaried. Each type of employee object can have its own customized
compute-pay operation. When a new type of employee is created, e.g., student, the
programmer simply creates a new type of employee object and a new implementation of
compute-pay for the new type of employee. When an instance of student receives the
message to compute-pay, it uses the operation defined in the new object to perform the
calculation. The compute-pay operations of the other types of employees are not affected
by the payment operations required for the student. In contrast, structured systems often
have all pay operations contained in one program. The program must be capable of
differentiating between the different types of employees and applying the appropriate
operation. A modification to a new type of employee typically requires existing
structured code to be changed.

Inheritance: Inheritance is a reuse mechanism that allows programmers to define objects
incrementally by reusing previously defined objects as the basis for new objects. For
example, when defining a new type of employee (e.g., student), the new employee type
can inherit the characteristics common to all employees (e.g., name, address), from a
generic type of employee. In this approach, the programmer needs only to be concerned
with the difference between student employees and generic employees. Structured
systems do not have an inheritance mechanism as part of their formal specification.

3.2 A Reduced CK Metrics Suite

In Section 2 we listed the complete CK suite of object-oriented metrics, however they
were not rigorously defined. A subset of the suite is formally defined (name, definition,
and theoretical basis) in this subsection in order to develop the reduced suite. See [CHI]
for the formal definitions of the complete set of the CK suite of object-oriented metrics.

Metric 1: Weighted Methods Per Class (WMC)

Definition 1: Consider a class C1, with methods M1, …, Mn that are defined in the class.
Let c1, …, cn be the complexity of the methods. Then:

 n

WMC = ∑ ci.
 i =1

If all method complexities are considered to be unity, then WMC = n, the number of
methods.

 5

Theoretical Basis 1: WMC relates directly to Bunge’s [BUN77], [BUN79] definition of
complexity of a thing, because methods are properties of object classes and complexity is
determined by the cardinality of its set of properties. The number of methods is therefore
a measure of the class definition as well as attributes of a class, because attributes
correspond to properties.

Metric 2: Coupling Between Objects (CBO)

Definition 2: CBO for a class is the count of the number of other classes to which it is
coupled.

Theoretical Basis 2: CBO relates to the notion that an object is coupled to another object
if one of them acts on the other, i.e., methods of one use methods or instance variables of
another. Since objects of the same class have the same properties, two classes are
coupled when methods declared in one class use methods or instance variables defined by
the other class.

Metrics 3: Response for a Class (RFC)

Definition 3: RFC = |RS| where RS is the response set for the class.

Theoretical Basis 3: The response set for the class can be expressed as

RS = {M}Uall i{Ri}

where {Ri} = set of methods called by method i and {M} = set of all methods in the class.

The response set of a class is a set of methods that can potentially be executed in
response to a message received by an object of that class. The cardinality of this set is a
measure of the attributes of objects in the class. Since it specifically includes methods
called from outside the class, it is also a measure of the potential communication between
the class and other classes.

The formal definitions above are now used to construct an equation relating two out of
the three more important aspects (encapsulation, polymorphism, and inheritance) of the
object-oriented paradigm namely, encapsulation and polymorphism. From Definition 3
we have:

RFC = NLM + NRM (1)

where NLM = number of local methods in a class and NRM = number of remote methods
called from a class. Definition 1 stated that if all the method complexities in a class are
considered to be unity, then WMC = n, the number of methods in the class, which gives
NLM = WMC [CHI].

 6

It was mentioned in Section 2 that excessive coupling between objects indicates
weakness of class encapsulation and may inhibit reuse. However, some coupling
between objects is necessary for objects to be able to interact with each other. Ideally,
objects should be coupled as loosely as possible in order to promote encapsulation and
reusability. This is accomplished by having objects interact with which other exclusively
through their interface. There are other types of coupling. The CBO metric defined in
Definition 2 describes objects that are tightly coupled; the objects are accessed internally
though remote methods calls (NRM) to other object methods or instance variables.

Because tight coupling between objects is undesirable, we shall use this fact as one of the
cornerstones in identifying low quality software. On average, the number of remote
method calls is much larger than the number of instance variables accessed from one
object to the next. Thus, under tight coupling of objects the number of remote methods
calls approximates the measure of coupling between objects that is NRM ≈ CBO.

Substituting the metrics WMC and CBO for NLM and NRM respectively into Equation 1
(RFC = NLM +NRM) gives:

RFC = WMC + CBO (2).

Equation 2 and the DIT metrics shall be used to identify low quality software in Section
4, Empirical Investigation.

3.3 Applying the Reduced Metrics Suite

There are three fundamental aspects of the object-oriented paradigm, namely
encapsulation, polymorphism, and inheritance. The equation RFC = WMC + CBO
captures both encapsulation and polymorphism and their relationship to each other. High
values for WMC and CBO indicate low encapsulation [HUD], [LOR93], [LOR94] a class
may be implementing too much of a system’s functionality or may be coupled too tightly.
The RFC metric measures polymorphism by recording the number of remote method
calls by the class, for example, virtual methods in the C++ programming language is a
direct implementation of the concept of polymorphism. It is clear that the DIT metric
quantifies the inheritance aspect of the object-oriented paradigm and should need no
further explanation.

Examining equation RFC = WMC + CBO more closely suggests that if WMC and CBO
increases then RFC also increases and if WMC and CBO decreases, RFC also decreases.
If objects in a system are loosely coupled (one indicator of high quality code) then the
CBO metric will be low and increases in RFC are due to WMC. That is, including more
methods in a class increases the RFC metric but since coupling is loose, the CBO metric
should not significantly increase. On the other hand, if objects in a system are tightly
coupled (one indicator of low quality code) then the CBO metric will be high and
increases in RFC would be due to both CBO and WMC. Different researchers like Kidd,
Lorenz, [LOR94] and Rosenberg [ROS97] give similar preferred highest values for these
object-oriented metrics along with values for the DIT metric also.

 7

Thus, as coupling between objects increases, the equation RFC = NLM + NRM
approaches the equation RFC = WMC + CBO. This can be used to identify low quality
object-oriented systems and with the DIT metrics capture the three more important
aspects of the object-oriented paradigm: encapsulation, polymorphism, and inheritance.

This section provides theoretical justification for suggesting the completeness and
sufficiency of a minimal set of object-oriented metrics for analyzing the quality of an
object-oriented system, where some of the metrics were related in the form of an
equation. The next section applies this reduced set of object-oriented metrics to three real
world projects to measure their overall quality and compare the results with the results
obtained from using a larger set of both traditional and object-oriented metrics.

4. Empirical Investigation

This section applies the results obtained in the study to three industrial strength software
systems. The outcome is validated with previous results obtained from extensive full-
scale code analysis performed by the SATC on the same three systems.

Subsection 4.1 describes the software applications used in validating the reduced object-
oriented metrics set in detail. The statistical terminologies used in the investigation are
defined and discussed in Subsection 4.2 and the statistical analysis is conducted in
Subsection 4.3.

4.1 Descriptions of the Applications

The three applications used in this empirical study to validate the reduced object-oriented
metrics set are industrial strength software. Two of the applications were NASA systems
and one was a commercial product. We labeled the applications as: System A, System B,
and System C. System A was the commercial software implemented in Java and
consisted of approximately 50,000 lines of code and had 46 classes. One of the NASA
software applications was also implemented in Java and consisted of approximately
300,000 lines of code and contained 1,000 classes. We labeled this application System B.
The last application, System C, was also a NASA product approximately consisting of
500,000 lines of code distributed over 1,617 classes. System C was implemented in the
C++ programming language.

Table 1 summarizes this descriptive information along with other information for each
System. The last two rows in the table were obtained from the SATC full-scale code
analysis of these systems. The table shows a direct positive correlation between the
degree of object-oriented constructs and the level of quality for each software application.

 8

Table 1: Summary of Applications used to Validate Reduced CK Metrics Set

System A B C
Lines of Code 50k 300k 500k
Number of Classes 46 1000 1617
Language Java Java C++
Type of Application Commercial Software NASA Software NASA Software
Code Construct Object-Oriented Excellent Object-Oriented Good Object-Oriented
Quality Low High Medium

4.2 Definitions for Statistical Analysis

In order to investigate the correlations and relationships between the object-oriented
metrics and software quality we conducted a correlation and a multiple linear regression
analysis. Definitions and discussions on the terminologies used in the correlation and
regression analysis are provided in this section.

A multiple linear regression model can be defined as

Y = β0 + β1X1 + β2X2 + … + βpXp + ε (3).

The various components of the regression model above along with other statistical
terminologies used in the paper are listed below:

Independent Variable (Xi’s): The independent variable in an experiment is the variable
that is systematically manipulated by the investigator. In most experiments, the
investigator is interested in determining the effect that one variable; has on one or more
of the other variables. In the regression model [3] the Xi’s denote the independent
variables.

Dependent Variable (Y): The dependent variable in an experiment is the variable that the
investigator measures to determine the effect of the independent variable. In the
regression equation [3] variable Y denotes the dependent variable.

Random Error (ε): The variation in the observed data that is not accounted for by the
model. In the regression model [3] the random error is denoted by ε.

Coefficients (βi’s): The estimated multiple linear regression coefficients measure the
respective independent variable’s contribution on the dependent variable. The larger the
absolute coefficient values, the larger (positive or negative according to the sign) the
impact of the independent variable on the dependent variable. In the regression model
[3] β0 represents the constant term.

Linear Correlation Coefficient (r): The linear correlation coefficient expresses
quantitatively the magnitude and direction of the linear relationship between two
variables. A correlation coefficient can vary from +1 to ─1. The sign of the coefficient

 9

tells us whether the relationship is positive or negative. The numerical part of the
correlation coefficient describes the magnitude of the correlation. The higher the
number, the greater the correlation.

The Statistical Significance (p-value): Represents the degree of accuracy of coefficient
estimation. More specifically, the p-value represents the probability of error that is
involved in accepting observed results as valid. The larger the p-value, the less
believable the estimated impact of the explanatory independent variable (OO metric). In
our study we used 0.05 as the significance threshold.

The Goodness of Fit (R2): The goodness of fit is an indicator of how well the model fits
the data. The higher the value of R2, the more accurate the model is.

4.3 Statistical Analysis

Figures 1 – 3 show the distributions of the reduced CK object-oriented metrics suite
namely, the RFC, CBO, WMC, and DIT metrics for the three systems. The percentage of
classes is on the x-axis and the metrics values on the y-axis. The distributions for
Systems A, B, and C included 46 Java, 1,000 Java, and 1,617 C++ classes respectively.

The shapes of the distributions for all the metrics are similar between systems except for
the DIT metric. The shape of the DIT metric for Systems B and C are similar. However,
System A exhibits a different distribution from both Systems B and C. The distribution
for System A shows that over 60% of the classes in that system had a DIT metric of 0,
suggesting a lack of reuse via inheritance.

 10

0 100 200 300

Response for a Class (RFC)

10%

20%

30%

40%

50%
Pe

rc
en

t

2 4 6 8 10

Coupling Between Objects (CBO)

0%

10%

20%

30%

Pe
rc

en
t

100 200 300 400 500

Weighted Methods per Class (WMC)

0%

25%

50%

75%

Pe
rc

en
t

0.0 0.5 1.0 1.5 2.0

Depth of Inheritance Tree (DIT)

0%

20%

40%

60%

Pe
rc

en
t

Figure 1: Distributions of the Reduced CK Metrics Set for System A

0 250 500 750

Response for a Class (RFC)

10%

20%

30%

40%

50%

Pe
rc

en
t

0 5 10 15 20

Coupling Between Objects (CBO)

10%

20%

30%

40%

Pe
rc

en
t

0 100 200 300

Weighted Methods per Class (WMC)

0%

25%

50%

75%

Pe
rc

en
t

0 1 2 3

Depth of Inheritance Tree (DIT)

0%

20%

40%

60%

Pe
rc

en
t

Figure 2: Distributions of the Reduced CK Metrics Set for System B

 11

100 200 300 400

Response for a Class (RFC)

0%

10%

20%

30%
Pe

rc
en

t

0 5 10 15

Coupling Between Objects (CBO)

0%

10%

20%

30%

Pe
rc

en
t

100 200 300 400

Weighted Methods per Class (WMC)

10%

20%

30%

40%

50%

Pe
rc

en
t

1 2 3 4 5

Depth of Inheritance Tree (DIT)

10%

20%

30%

40%

Pe
rc

en
t

Figure 3: Distributions of the Reduced CK Metrics Set for System C

The descriptive statistics and the correlations between the metrics for each system are
given in Tables 2 – 7. The values in bold are the mean values of the reduced metrics set.
The descriptive statistics for Systems A, B, and C are included on 46 Java, 1,000 Java,
and 1,617 C++ classes respectively. The descriptive statistics tables show that the mean
values for the CBO, RFC, and WMC metrics for System B and C are lower than the
values for System A indicating higher code quality for System B and C over System A.

In the descriptive statistics tables the values are provided for the full set of the CK
metrics suite for completeness although we only used the reduced set highlighted in bold.
The correlation results (tables) are discussed at the end of this section in conjunction with
the regression models.

Table 2: Descriptive Statistics for System A

 Minimum Maximum Mean Std. Deviation
CBO 0 11 2.48 2.93
LCOM 0 3804 447.65 1015.03
RFC 0 381 80.39 101.91
NOC 0 2 0.07 0.32
DIT 0 2 0.37 0.53
WMC 0 596 45.70 110.95

 12

Table 3: Correlation Analysis for System A

 CBO LCOM RFC NOC DIT WMC
CBO 1 0.36 0.83 -0.17 -0.20 0.43
LCOM 1 0.66 -0.09 -0.09 0.03
RFC 1 -0.16 -0.22 0.47
NOC 1 -0.01 -0.08
DIT 1 -0.03
WMC 1

Table 4: Descriptive Statistics for System B

 Minimum Maximum Mean Std. Deviation
CBO 0 22 1.25 2.01
LCOM 0 5444 78.34 284.72
RFC 0 827 43.84 65.31
NOC 0 21 0.35 1.66
DIT 0 4 0.97 0.69
WMC 0 381 11.10 26.12

Table 5: Correlation Analysis for System B

 CBO LCOM RFC NOC DIT WMC
CBO 1 0.10 0.28 -0.03 0.34 0.11
LCOM 1 0.76 -0.01 0.10 0.68
RFC 1 -0.09 0.16 0.75
NOC 1 -0.10 -0.07
DIT 1 0.05
WMC 1

Table 6: Descriptive Statistics for System C

 Minimum Maximum Mean Std. Deviation
CBO 0 16 2.09 2.05
LCOM 0 3281 113.94 266.03
RFC 0 457 28.60 36.24
NOC 0 116 0.39 3.22
DIT 0 6 1.02 0.98
WMC 0 492 23.97 40.26

 13

Table 7: Correlation Analysis for System C

 CBO LCOM RFC NOC DIT WMC
CBO 1 0.25 0.35 0.00 0.33 0.26
LCOM 1 0.61 0.05 -0.02 0.48
RFC 1 0.01 -0.00 0.83
NOC 1 -0.01 0.00
DIT 1 -0.10
WMC 1

Tables 3, 5, and 7 present the correlation analysis for the CK object-oriented metrics suite
over the various software systems. The values in bold are the mean values of the reduced
metrics set excluding the DIT metric. A correlation analysis was conducted for Systems
A, B, and C where the systems had 46 Java, 1,000 Java, and 1,617 C++ classes
respectively. Table 8 summarizes the results of the correlation analysis for the reduced
metrics set over the various software systems. The columns list the correlation values for
each pair of metrics in the reduced metrics set and the rows list the system. In the table
Metric 1 x Metric 2 = correlation between Metric 1 and Metric 2.

Examining Table 8 shows that for System A all of the metrics are highly correlated with
each other, with CBO and RFC being the most significantly correlated. This suggests
low quality code because RFC increases due to tight coupling in the system and not
because of the introduction of methods into the system. Equation 2 shows that RFC =
WMC + CBO. The opposite is true for System B and C, that is, the correlation between
CBO and RFC is low and between CBO and WMC. However, the correlation between
RFC and WMC is high. This shows that RFC increases as the number of methods
increases in these applications, using Equation 2. These results show that Systems B and
C consist of loosely coupled objects, implying high quality code with System B having
high quality. Similar findings were obtained from the regression analysis.

Table 8: Correlation Analysis Summary

 CBOxRFC CBOxWMC RFCxWMC
System A 0.83 0.43 0.47
System B 0.28 0.11 0.75
System C 0.35 0.26 0.83

The multiple linear regression model listed in Equation 4 was fitted to the reduced set of
metrics for Systems A, B, and C respectively and the results are given in Table 9.

RFC = βWMCWMC + βCBOCBO + Constant (4)

The standardized coefficients (βi’s) for the regression model of each system were all
significant at the 0.01 level and each having a p-value of 0.000, except for the coefficient
of the WMC metric for System A where βWMC and Constant had a p-value of 0.160 and

 14

0.466 respectively at a level of significance of 0.01. These results reinforce the findings
of the correlation analysis suggesting that objects in System A are tightly coupled and
increases in the RFC metric are due to increases in CBO and not WMC, implying low
quality code.

On the other hand the results for Systems B and C are the reverse. This can be explained
by observing the magnitudes of the standardized coefficients for both of the independent
variables WMC and CBO in the model since they were both significant. The magnitude
of the coefficient for the independent variable WMC is approximately four times larger
than that of CBO for Systems B and C. This implies that increases to the RFC metric are
due to an increase in the number methods in a class and not to an increase in coupling.
Thus Systems B and C consist of loosely coupled objects indicating high quality code.

Table 9: Regression Analysis Summary

Estimated Parameters System A System B System C
βWMC (Unstandardized) 0.120 1.831 0.712
βCBO (Unstandardized) 26.985 6.471 2.623
Constant (Unstandardized) 8.036 15.427 6.039
βWMC (Standardized) 0.131 0.732 0.792
βCBO (Standardized) 0.777 0.200 0.148
R2 0.708 0.608 0.708

The quality of the code for System B is of a higher quality than System C with respect to
the magnitudes of the standardized coefficients in the regression models. Also the fit of
the regression model over each system was appropriate since each had an R2 of
approximately 70%.

In the correlation and regression analysis the three main aspects of the object-oriented
paradigm, encapsulation, polymorphism, and inheritance were not explicitly mentioned in
relation to code quality. However, the coupling of objects in the systems was discussed
at length in conjunction with code quality using the CBO metric and this metric measures
encapsulation. Polymorphism of a system is measured indirectly by the metrics RFC and
WMC, and these metrics were related in Equations 2 and 4. Although the case of
inheritance was not dealt with in the correlation and regression analysis, the inheritance
over the systems was evaluated using the DIT metric, as shown in the descriptive
statistics table for each system.

5. Conclusions and Future Work

We have constructed a simple and easy to use minimal set of Orthogonal Object-Oriented
metrics in the form of an equation and one standalone metric, which can be used to
evaluate software quality, using the CK suite of object-oriented metrics as a superset.

 15

This was accomplished by observing that the correlation of the metrics contained in the
CK metrics suite increased as the quality of code decreased. This motivated a
relationship between some of the metrics in the CK suite of object-oriented metrics.

The reduced metrics suite was validated using three industrial strength software systems.
By comparing the results obtained from the reduced metrics set approach with the results
obtained from a full-scale code analysis conducted using the entire CK object-oriented
metrics suite together with traditional metrics. The reduced metrics set approach was
able to classify the software systems with respect to the level of code quality. Both the
reduced metrics set approach and the full metrics set (CK metrics suite and traditional)
approach resulted in the same software quality system classification. System A was low
quality software, System B was high, and System C was medium.

The reduced CK metrics set approach is very promising. A word of caution is prudent at
this point: the reduced metrics set approach is not a silver bullet. The approach is more
applicable to identifying low quality code than high, due to specific theoretical concepts
employed to develop the approach. However, this is a mammoth step in the right
direction in reducing the turnaround time it takes to perform a code analysis on industrial
strength software. Future research should be conducted with the aim of developing more
appropriate reduced metrics set models for identifying high quality code and how this
reduced object-oriented metrics set approach can be integrated into the software
development lifecycle.

6. References

[BAS] Basili, V. R., Briand L. C., and Melo, W. L. “A Validation of Object-Oriented
Design Metrics as Indicators”, IEEE Transactions on Software Engineering, 22(10):551-
761, October 1996.

[BUN77] Bunge, M., Treatise on Basic on Philosophy: Ontology I: The Furniture of the
World, Boston: Riedel, 1977.

[BUN79] Bunge, M., Treatise on Basic on Philosophy: Ontology II: The World of the
Systems, Boston: Riedel, 1979.

[CHI] Chidamber, S. R. & Kemerer, C. F., “A Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software Engineering, Vol. 20, #6, June 1994.

[HAR98] Harrison, R., Counsell, S. J., and Nithi, R. V., “An Evaluation of the MOOD
Set of Object-Oriented Software Metrics”, IEEE Transaction on Software Engineering,
Vol. 24, No. 6, June 1998.

 16

[HIT] Hitz, M. and Montazeri, B. “Chidamber and Kemerer’s Metrics Suite: A
Measurement Theory Perspective”, IEE Transaction on Software Engineering, Vol. 22,
No. 4, April 1996.

[HUD] Hudli, R., Hoskins, C., Hudli, A., “Software Metrics for Object Oriented
Designs”, IEEE Transactions on Software Engineering, 1994.

[LAC] Lacovara , R.C., and Stark G. E., “A Short Guide to Complexity Analysis,
Interpretation and Application”, May 17, 1994.
http://members.aol.com/GEShome/complexity/Comp.html

[LIW] Li, W, Henry, S., et. al., “Measuring Object Oriented Design,” Journal of Object
Oriented Programming, Vol. 8, #4, July 1995.

[LOR93] Lorenz, Mark, Object Oriented Software Development, Prentice Hall, 1993.

[LOR94] Lorenz, Mark & Kidd Jeff, Object-Oriented Software Metrics, Prentice Hall,
1994.

[MCC99] McCabe and Associates, Using McCabe QA 7.0, 1999, 9861 Broken Land
Parkway 4th Floor Columbia, MD 21046.

[MCC76] McCabe, T. J., “A Complexity Measure”, IEEE Transactions on Software
Engineering, SE-2(4), pages 308-320, December 1976.

[MOR87] Moreau, D. R., “A Programming Environment Evaluation Methodology for
Object-Oriented Systems”, Ph.D. Dissertation, University of Southwestern Louisiana,
1987.

[MOR89] Moreau, D. R., and Dominick, W. D., “Object-Oriented Graphical Information
Systems: Research Plan and Evaluation”, Journal of Systems and Software, vol. 10, pp.
23-28, 1989.

[MOR90] Moreau, D. R., and Dominick, W. D., “A Programming Environment
Evaluation Methodology for Object-Oriented Systems: Part I – The Methodology”,
Journal of Object-Oriented Programming, vol. 3, pp. 38-52, 1990.

[ROS97] Rosenberg, L., “Metrics for Object-Oriented Environment”, EFAITP/AIE Third
Annual Software Metrics Conference, 1997.

[ROS98] Rosenberg, L., and Hammer, T., “Metrics for Quality Assurance and Risk
Assessment”, Proc. Eleventh International Software Quality Week, San Francisco, CA,
1998.

 17

http://members.aol.com/GEShome/complexity/Comp.html

[ROS95] Rosenberg, L., and Hyatt, L., “Software Quality Metrics for Object-Oriented
System Environments”, Software Assurance Technology Center, Technical Report
SATC-TR-95-1001, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771.

[RUM] Rumbaugh, J., Blaha, M., et. al., Object-Oriented Modeling and Design, Prentice
Hall, 1991.

[SHE] Shepperd, M., and Cartwright, M., “An Empirical Investigation of an Object-
Oriented Software System”, Department of Computing Bournemouth University Talbot
Campus Poole, BH12 5BB UK, October 1997.

[TAN] Tang, M., Kao, M., and Chen, M., “An Empirical Study on Object-Oriented
Metrics”, IEEE Transactions on Software Engineering, 0-7695-0403-5, 1999.

[TEG] Tegarden, D., Sheetz, S., Monarchi, D., “Effectiveness of Traditional Software
Metrics for Object-Oriented Systems”, Proceedings: 25th Hawaii International Confernce
on System Sciences, January, 1992, pp. 359-368.

[WEY] Weyuker, E., “Evaluating Software Complexity Measures”, IEEE Transactions
on Software Engineering, 14:1357-1365, 1988.

 18

	October 12, 2001
	ABSTRACT
	EXECUTIVE SUMMARY
	Theoretical Basis 1: WMC relates directly to Bun
	Table 1: Summary of Applications used to Validate Reduced CK Metrics Set
	Lines of Code
	Y = ß0 + ß1X1 + ß2X2 + … + ßpXp + e\(3\).
	
	Table 2: Descriptive Statistics for System A
	CBO
	Table 3: Correlation Analysis for System A
	CBO
	Table 4: Descriptive Statistics for System B

	CBO
	Table 5: Correlation Analysis for System B
	Table 6: Descriptive Statistics for System C
	Table 7: Correlation Analysis for System C

	CBO
	Table 8: Correlation Analysis Summary
	CBOxWMC
	System A
	Table 9: Regression Analysis Summary
	
	Estimated Parameters

	6.References

